Forensic soil analysis is crucial in criminal investigations, necessitating robust analytical methodologies for an accurate discrimination of soil types and origins. This study explored the discrimination efficiency of thermogravimetric and differential scanning calorimetric analyses of Inceptisol, reddish Oxisol, and yellowish Oxisol soils from Brazil’s Cerrado region. Ninety air-dried soil samples collected at various locations underwent thermal analysis, focusing on mass loss of gibbsite, goethite, and kaolinite at specific temperatures. The log-transformed data were submitted to principal component analysis, nonmetric multidimensional scaling, and cluster analysis. The thermogravimetry emerged as a highly discriminatory tool, effectively delineating between soil types, and even detecting spatial variations. In contrast, the differential scanning calorimetry exhibited limited discriminatory power. The findings underscore the thermogravimetric potential as a valuable technique in soil forensics, providing critical insights into composition and spatial variations essential for criminal investigations. This study highlights the need for further research to explore synergies with complementary techniques, aiming to enhance forensic discrimination across diverse soil types and geographic contexts. The objective representation of results in this abstract emphasizes the significance of thermogravimetry in advancing forensic analysis of soil vestiges.