Remimazolam (Byfavo ® ), a recent FDA-approved ester-linked benzodiazepine, offers advantages in sedation, such as rapid onset and predictable duration, making it suitable for broad anesthesia applications. Its favorable pharmacological profile is primarily attributed to rapid hydrolysis, the primary metabolism pathway for its deactivation. Thus, understanding remimazolam hydrolysis determinants is essential for optimizing its clinical use. This study aimed to identify the enzyme(s) and tissue(s) responsible for remimazolam hydrolysis and to evaluate the influence of genetic polymorphisms and drug-drug interactions (DDIs) on its hydrolysis in the human liver. An initial incubation study with remimazolam and phosphate buffer saline (PBS), human serum, and the S9 fractions of human liver and intestine demonstrated that remimazolam was exclusively hydrolyzed by human liver S9 fractions. Subsequent incubation studies utilizing a Carboxylesterase inhibitor (Bis-para-nitrophenylphosphate, BNPP), recombinant human Carboxylesterase1 (CES1) and Carboxylesterase 2 (CES2) confirmed that remimazolam is specifically hydrolyzed by CES1 in human liver. Furthermore, in vitro studies with wild-type CES1 and CES1 variants transfected cells revealed that certain genetic polymorphisms significantly impair remimazolam deactivation. Notably, the impact of CES1 G143E was verified using individual human liver samples. Moreover, our evaluation of the DDIs between remimazolam and several other substrates/inhibitors of CES1-including simvastatin, enalapril, clopidogrel and sacubitrilfound that clopidogrel significantly inhibited remimazolam hydrolysis at clinically relevant concentrations, with CES1 genetic variants potentially influencing the interactions. In summary, CES1 genetic variants and its interacting drugs are crucial factors contributing