Endosomal Toll-like receptors (TLR3/7/8/9) are highly analogous sensors
for various viral or bacterial RNA/DNA molecular patterns. Nonetheless, few
small-molecules can selectively modulate these TLRs. In this manuscript, we
identified the first human TLR8-specific small-molecule antagonists via a novel
inhibition mechanism. Crystal structures of two distinct TLR8-ligand complexes
validated a unique binding site on the protein-protein interface of the TLR8
homodimer. Upon binding to this new site, the small-molecule ligands stabilize
the preformed TLR8 dimer in its resting state, preventing activation. As a proof
of concept of their therapeutic potential, we have demonstrated that these
drug-like inhibitors are able to suppress TLR8-mediated proinflammatory
signaling in various cell lines, human primary cells, and patient specimens.
These results not only suggest a novel strategy for TLR inhibitor design, but
also shed critical mechanistic insight into these clinically important immune
receptors.