Background
The purpose of this study was to investigate the suitability of nanostructured lipid carriers (NLCs) loaded with miltefosine (HePC) as an anticancer drug for the treatment of breast cancer.
Methods
HePC-NLCs were prepared using a microemulsion technique and then evaluated for particle size, polydispersity index (PDI), incorporation efficiency, in vitro release of entrapped drug, and hemolytic potential. Furthermore, pharmacokinetic, biodistribution, and liver toxicity analyses were performed in Sprague–Dawley rats, and antitumor efficacy was evaluated in Michigan Cancer Foundation-7 (MCF-7) and squamous cell carcinoma-7 (SCC-7) cells in vitro and in tumour-bearing BALB/c mice in vivo. Advanced analyses including survival rate, immunohistopathology, and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays were performed to evaluate apoptosis in vivo.
Results
The average particle size of the HePC-NLCs was 143 ± 16 nm, with a narrow PDI (0.104 ± 0.002), and the incorporation efficiency was found to be 91 ± 7%. The NLCs released HePC in a sustained manner, and this release was significantly lower than that of free drug. The in vitro hemolytic assay demonstrated a significantly reduced hemolytic potential (~9%) of the NLCs compared to that of the test formulations. The HePC-NLCs demonstrated enhanced pharmacokinetic behaviour over free drug, including extended blood circulation and an abridged clearance rate in rats. Furthermore, the HePC-NLCs exhibited higher cytotoxicity than the free drug in MCF-7 and SCC-7 cells. Moreover, the HePC-NLCs showed significantly enhanced (
P
< 0.005) antitumor activity compared to that of the control and free drug-treated mouse groups. Tumour cell apoptosis was also confirmed, indicating the antitumor potential of the HePC-NLCs.
Conclusion
These findings demonstrate the ability of NLCs as a drug delivery system for enhanced pharmacokinetic, antitumor, and apoptotic effects, most importantly when loaded with HePC.