To study the appropriate numerical simulation methods for venturi injectors, including the investigation of the hydraulic performance, mixing process, and the flowing law of the two internal fluids, simulations and experiments were conducted in this study. In the simulations part, the cavitation model based on the standard k–ε turbulence and mixture models was added, after convergence of the calculations. The results revealed that the cavitation model has good agreement with the experiment. However, huge deviations occurred between the experimental results and the ones from the calculation when not considering the cavitation model after cavitation. Thus, it is inferred that the cavitation model can exactly predict the hydraulic performance of a venturi injector. In addition, the cavitation is a crucial factor affecting the hydraulic performance of a venturi injector. The cavitation can ensure the stability of the fertilizer absorption of the venturi injector and can realize the precise control of fertilization by the venturi injector, although it affects the flow stability and causes energy loss. Moreover, this study found that the mixing chamber and throat are the main areas of energy loss. Furthermore, we observed that the internal flow of the venturi injector results in the majority of mixing taking place at the diffusion and outlet sections.