Single-base resolution quantitative genome methylation analysis in the model bacterium Helicobacter pylori by enzymatic methyl sequencing (EM-Seq) reveals influence of strain, growth phase, and methyl homeostasis
Lubna Patel,
Florent Ailloud,
Sebastian Suerbaum
et al.
Abstract:Background
Bacterial epigenetics is a rapidly expanding research field. DNA methylation by diverse bacterial methyltransferases (MTases) contributes to genomic integrity and replication, and many recent studies extended MTase function also to global transcript regulation and phenotypic variation. Helicobacter pylori is currently one of those bacterial species which possess the highest number and the most variably expressed set of DNA MTases. Next-generation sequencing technologies can directly … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.