Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Dilated cardiomyopathy (DCM) is the second leading cause of heart failure, with intricate pathophysiological underpinnings. In order to shed fresh light on the mechanistic research of DCM, we combined bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data to examine significant cells and genes implicated in the disease. Methods This analysis employed publicly accessible bulk RNA-seq and scRNA-seq DCM datasets. The scRNA-seq data underwent normalization, principal component, and t-distribution stochastic neighbor embedding analysis. Cell-to-cell communication networks and activity analysis were conducted using CellChat. Utilizing enrichment analysis, the marker genes’ role in the active cells was evaluated. After screening by limma software and weighted gene co-expression network analysis, the differentially expressed genes (DEGs) served as hub genes. Furthermore, these hub genes were subjected to immunological studies, transcription factor expression, and gene set enrichment. Lastly, the expression of the four hub genes and their connection to DCM were verified using the rat models. Results Fibroblasts and monocytes were chosen as hub cells from among the eight identified cell clusters; their marker genes intersected with DEGs to yield six hub genes. In addition, the six hub genes and the essential module genes intersected to yield four essential genes ( ASPN, SFRP4, LUM , and FRZB) that were connected to the Wnt signaling pathway and highly expressed in fibroblast. The four hub DEGs had an expression pattern in the DCM rat model experiment results that was in line with the findings of the bioinformatics study. Additionally, there was a strong correlation between decreased cardiac function and the up-regulation of ASPN, SFRP4, LUM , and FRZB . Conclusion Ultimately, bulk RNA-seq and scRNA-seq data identified fibroblasts and monocytes as the main cell types implicated in DCM. The highly expressed genes ASPN, FRZB , LUM , and SFRP4 in fibroblasts may aid in the mechanistic investigation of DCM.
Background Dilated cardiomyopathy (DCM) is the second leading cause of heart failure, with intricate pathophysiological underpinnings. In order to shed fresh light on the mechanistic research of DCM, we combined bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data to examine significant cells and genes implicated in the disease. Methods This analysis employed publicly accessible bulk RNA-seq and scRNA-seq DCM datasets. The scRNA-seq data underwent normalization, principal component, and t-distribution stochastic neighbor embedding analysis. Cell-to-cell communication networks and activity analysis were conducted using CellChat. Utilizing enrichment analysis, the marker genes’ role in the active cells was evaluated. After screening by limma software and weighted gene co-expression network analysis, the differentially expressed genes (DEGs) served as hub genes. Furthermore, these hub genes were subjected to immunological studies, transcription factor expression, and gene set enrichment. Lastly, the expression of the four hub genes and their connection to DCM were verified using the rat models. Results Fibroblasts and monocytes were chosen as hub cells from among the eight identified cell clusters; their marker genes intersected with DEGs to yield six hub genes. In addition, the six hub genes and the essential module genes intersected to yield four essential genes ( ASPN, SFRP4, LUM , and FRZB) that were connected to the Wnt signaling pathway and highly expressed in fibroblast. The four hub DEGs had an expression pattern in the DCM rat model experiment results that was in line with the findings of the bioinformatics study. Additionally, there was a strong correlation between decreased cardiac function and the up-regulation of ASPN, SFRP4, LUM , and FRZB . Conclusion Ultimately, bulk RNA-seq and scRNA-seq data identified fibroblasts and monocytes as the main cell types implicated in DCM. The highly expressed genes ASPN, FRZB , LUM , and SFRP4 in fibroblasts may aid in the mechanistic investigation of DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.