ABSTRACTMacrophages are a type of white blood cell, of the immune system, that engulfs and digests cellular debris, cancer cells, and anything else that does not have the type of proteins specific to healthy body cells on its surface. Understanding gene expression dynamics in macrophages are crucial for studying human diseases. Recent advances in high-throughput technologies have enabled the collection of immense amounts of biological data. A reliable marker of macrophage is essential to study their function. Traditional approaches use a number of markers that may have tissue specific expression patterns. To identify universal biomarker of macrophage, we used a previously published computational approach called BECC (Boolean Equivalent Correlated Clusters) that was originally used to identify universal cell cycle genes. We performed BECC analysis on a seed gene CD14, a known macrophage marker. FCER1G and TYROBP were among the top candidates which were validated as strong candidates for universal biomarkers for macrophages in human and mouse tissues. To our knowledge, such a finding is first of its kind.CONTRIBUTIONS TO THE FIELDWe have developed a computational approach to identify universal biomarkers of different entities in a biological system. We applied this approach to study macrophages and identified universal biomarkers of this particular cell type. FCER1G and TYROBP were among the top candidates which were validated as strong candidates for universal biomarkers for macrophages in human and mouse tissues. The expression patterns of TYROBP and FCER1G are found to be more homogeneous compared to currently used biomarkers such as ITGAM, EMR1 (F4/80), and CD68. Further, we demonstrated that this homogeneity extends to all the tissues currently profiled in the public domain in multiple species including human and mouse. FCER1G and TYROBP expression patterns were also found to be extremely specific to macrophages found in various tissues. They are strongly co-expressed together. We believe that these two genes are the most reliable candidates of universal biomarker for macrophages.