Mammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that in young niches, cellular Wnt agonists are poorly translated, Fgf20 levels are high and R-spondin levels are low, resulting in a pro self-renewal environment. By contrast, older niches are low in Fgf20 and high in R-spondin, with increased cellular translation of Wnt agonists, including the signalosome-promoting Tmem59. This suggests a hypothesis that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving differentiation. We show Tsc1 hemizygosity differentially promoted translation of Wnt antagonists over agonists, expanding a transitional (Six2+, Cited1+, Wnt4+) state and delaying the tipping point. As predicted by these findings, reducing Rspo3 dosage in nephron progenitors or Tmem59 globally increased nephron numbers in vivo.