Background
Ferroptosis is a unique mode of cell death that is iron-dependent and associated with oxidative stress and lipid peroxidation. Oxidative stress and ferroptosis are essential mechanisms leading to metabolic abnormalities in cells and have been popular areas in cancer research.
Methods
Initially, 76 oxidative stress and ferroptosis-related genes (OFRGs) were acquired by intersecting the gene sets from oxidative stress and ferroptosis. Afterwards, optimal OFRGs were screened using PPI networks, and individuals were separated into two OFRG subtypes (K = 2). Subsequently, we successfully constructed and verified a prognostic signature comprising SLC7A2, Cadherin 19 (CDH19), and CCN1. To further uncover potential biomarkers of gastric cancer (GC), we examined the expression level of CDH19, investigated the effects of knocking down CDH19 on the biological behavior of GC cells, and explored whether CDH19 is involved in ferroptosis and oxidative stress processes.
Results
According to the findings, individuals in the low-risk scoring group have less infiltration of immune suppressive cells, fewer occurrences of immune escape and dysfunction, greater efficacy in chemotherapy and immunotherapy, and better survival outcomes. The qRT-PCR assay indicated that CDH19 expression was significantly higher in GC cells. Through experiments, we demonstrated that knocking down CDH19 can affect the transcription levels of ACSL4 and GPX4, increase intracellular iron ion concentration and accumulation of reactive oxygen species (ROS), and inhibit the proliferation and migration of GC cells.
Conclusion
We developed an OFRG-related signature to predict the prognosis and treatment responsiveness of individuals with GC and identified CDH19 as a possible therapeutic target for GC.
Supplementary Information
The online version contains supplementary material available at 10.1186/s40246-024-00682-w.