Microglial activation is implicated in the neurotoxicity of neurodegenerative diseases. Raised intracerebral levels of albumin are associated with the pathology of Alzheimer's disease, multiple sclerosis, and stroke where blood-brain barrier damage is evident. We report here that treatment of primary cultured microglia and the N9 microglial cell line with pure albumin, or albumin in which fatty acids and immunoglobulins remain attached (fraction V), induced a rise in intracellular calcium. This rise in intracellular calcium was mediated via Src tyrosine kinase and phospholipase C. The albumininduced calcium response was coupled to microglial proliferation, which was prevented by BAPTA, U73122 or PP2 but not mimicked by thapsigargin. In contrast, peritoneal macrophages were resistant to albumin-or fraction V-induced calcium responses and proliferation, whilst primary cultured astrocytes or the TSA-3 astrocyte cell line were responsive to fraction V albumin but not pure albumin. Furthermore, cerebellar granule neurones did not respond to albumin. These data suggest that albumin may play a role in microglial activation in pathological situations involving blood-brain barrier impairment, and that the specific responses of microglia to albumin allow a distinction to be made between the signalling responses of microglia, blood-borne macrophages, astrocytes and neurones.