2023
DOI: 10.1093/nar/gkac1212
|View full text |Cite
|
Sign up to set email alerts
|

Single-cell gene regulatory network prediction by explainable AI

Abstract: The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
2

Relationship

2
7

Authors

Journals

citations
Cited by 27 publications
(17 citation statements)
references
References 51 publications
0
13
0
1
Order By: Relevance
“…Während Datensätze aus herkömmlichen NGS-Panels, die heutzutage in der Routinediagnostik zur Identifizierung einzelner Mutationen verwendet werden, mit klassischen Datenanalyse-Strategien gehandhabt werden können, profitieren hochdimensionale Genomik-und Proteomik-Datensätze von Verfahren des maschinellen Lernens. Sie helfen dabei die Dimensionalität zu reduzieren und heterogene Datenarten, wie Genregulationen in Netzwerken oder DNA-Methylierungsdaten zu integrieren [49,50,51,52].…”
Section: Künstliche Intelligenz Zur Bewältigung Der Datenmengenunclassified
“…Während Datensätze aus herkömmlichen NGS-Panels, die heutzutage in der Routinediagnostik zur Identifizierung einzelner Mutationen verwendet werden, mit klassischen Datenanalyse-Strategien gehandhabt werden können, profitieren hochdimensionale Genomik-und Proteomik-Datensätze von Verfahren des maschinellen Lernens. Sie helfen dabei die Dimensionalität zu reduzieren und heterogene Datenarten, wie Genregulationen in Netzwerken oder DNA-Methylierungsdaten zu integrieren [49,50,51,52].…”
Section: Künstliche Intelligenz Zur Bewältigung Der Datenmengenunclassified
“…We then backpropagate using the generalized LRP-gamma rule, similar to previous works. 43,44 This rule propagates from one layer to the layer below using the equation: where (.) + = max (0, .)…”
Section: Methodsmentioning
confidence: 99%
“…Here, we used the heuristic 0.01 which worked well in other applications. 44 Applying the rule at each layer, starting at the top layer and moving backwards until the input layer, we obtain in the last step the contribution of each input feature to the prediction. For expanded features, the final LRP score is calculated as the sum of the LRP scores assigned to the tuple (x, 1-x).…”
Section: Methodsmentioning
confidence: 99%
“…Finally, although image analysis is a major focus of AI developments in pathology as described above, molecular "omics" profiling is another domain with high potential for AI to change the way we deal with such data. Although conventional NGS panels used nowadays in routine diagnostics to identify targetable mutations can be handled with classical data analysis strategies, increasingly common high-dimensional genomics and proteomics may benefit from machine-learning approaches by helping reduce the dimensionality and predict properties such as gene regulatory networks [85,86] or DNA-methylation data [87,88]. In this context, single-cell sequencing approaches are particularly well suited for AI-based analysis as they provide high-dimensional data for a high number of samples (tens of thousands of cells per experiment) [89] and, thus, allow training success beyond what is possible for bulk analyses in which numbers of samples are almost always smaller than the number of molecular measurements.…”
Section: Artificial Intelligence To Handle the Vast Amounts Of Data-c...mentioning
confidence: 99%