Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in most marine environments. Molecular methods such as metabarcoding have revealed a high, yet undescribed diversity of Foraminifera. However, so far only one molecular marker, the 18S ribosomal RNA, was available for metabarcoding studies on Foraminifera. Primers that allow amplification of foraminiferal mitochondrial cytochrome oxidase I (COI) and identification of Foraminifera species were recently published. Here we test the performance of these primers for the amplification of whole foraminiferal communities, and compare their performance to that of the highly degenerate LerayXT primers, which amplify the same COI region in a wide range of eukaryotes. We applied metabarcoding to 48 samples taken along three transects spanning a North Sea beach in the Netherlands from dunes to the low tide level, and analysed both sediment samples and meiofauna samples, which contained taxa between 42 µm and 1 mm in body size obtained by decantation from sand samples. We used single-cell metabarcoding (Girard et al., 2022) to generate a COI reference library containing 32 species of Foraminifera, and used this to taxonomically annotate our community metabarcoding data. Our analyses show that the highly degenerate LerayXT primers do not amplify Foraminifera, while the Foraminifera primers are highly Foraminifera- specific, with about 90% of reads assigned to Foraminifera and amplifying taxa from all major groups, i.e., monothalamids, Globothalamea, and Tubothalamea. We identified 176 Foraminifera ASVs and found a change in Foraminifera community composition along the beach transects from high tide to low tide level, and a dominance of single-chambered monothalamid Foraminifera. Our results highlight that COI metabarcoding can be a powerful tool for assessing Foraminiferal communities.