Although previous RNA sequencing methods have been widely used in orthopedic research and have provided ideas for therapeutic strategies, the specific mechanisms of some orthopedic disorders, including osteoarthritis, lumbar disc herniation, rheumatoid arthritis, fractures, tendon injuries, spinal cord injury, heterotopic ossification, and osteosarcoma, require further elucidation. The emergence of the single-cell RNA sequencing (scRNA-seq) technique has introduced a new era of research on these topics, as this method provides information regarding cellular heterogeneity, new cell subtypes, functions of novel subclusters, potential molecular mechanisms, cell-fate transitions, and cell‒cell interactions that are involved in the development of orthopedic diseases. Here, we summarize the cell subpopulations, genes, and underlying mechanisms involved in the development of orthopedic diseases identified by scRNA-seq, improving our understanding of the pathology of these diseases and providing new insights into therapeutic approaches.