Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region‐leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1‐Cre to knock out CREBZF in androgen‐synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF‐cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X‐zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17β‐Hsd3 in the adrenal cortex of CREBZF‐cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF‐cKO mice showed higher anxiety‐like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.
The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region‐leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1‐Cre to knock out CREBZF in androgen‐synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF‐cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X‐zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17β‐Hsd3 in the adrenal cortex of CREBZF‐cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF‐cKO mice showed higher anxiety‐like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.
Spermatogenesis is a highly complex and tightly regulated cellular differentiation process closely related to the productive performance of male livestock. We do not yet have a clear understanding of the spermatogenesis mechanism of buffalo. In this study, spermatogonia, spermatocytes and spermatids were analysed by flow cytometry. Quantitative proteomic and phosphoproteomic studies were performed on different spermatogenic cells using tandem mass tagging technology and liquid chromatography–tandem mass spectrometry. A total of 219 differentially expressed proteins (involved in focal adhesions and actin cytoskeleton pathways) and 71 phosphoproteins (involved in RNA transport and adhesion junction pathways) were obtained. Through trend analysis, a dynamic profile of protein expression was obtained, enriched to the main biological processes at different stages of spermatogenesis. By immunohistochemical localisation analysis, it was found that MACROH2A2, TOP2A, LMNA, LMNA (pS392), VIM and VIM (pS56) had specific localisation in testis cells. Network analysis of kinase‐substrate phosphorylation sites showed that AKT1 is the most active kinase, LMNA is regulated by most kinases and AKT1 can catalyse the phosphorylation of LMNA. This study provides a reference for studying the molecular mechanism of buffalo spermatogenesis and helps clarify the regulatory mechanism of protein translation and post‐translational modification during mammalian spermatogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.