Objectives
The accumulation of tumor‐associated macrophages (TAMs) is correlated with poor clinical outcome, but the mechanisms governing their differentiation from circulating monocytes remain unclear in humans.
Methods
Using multicolor flow cytometry, we evaluated TAMs phenotype in 93 breast cancer (BC) patients. Furthermore, monocytes from healthy donors were cultured in the presence of supernatants from dilacerated primary tumors to investigate their differentiation into macrophages (MΦ) in vitro. Additionally, we used transcriptomic analysis to evaluate BC patients’ blood monocytes profiles.
Results
We observed that high intra‐tumor CD163‐expressing TAM density is predictive of reduced survival in BC patients. In vitro, M‐CSF, TGF‐β and VEGF from primary tumor supernatants skewed the differentiation of healthy donor blood monocytes towards CD163highCD86lowIL‐10high M2‐like MΦ that strongly suppressed CD4+ T‐cell expansion via PD‐L1 and IL‐10. In addition, blood monocytes from about 40% of BC patients displayed an altered response to in vitro stimulation, being refractory to type‐1 MΦ (M1‐MΦ) differentiation and secreting higher amounts of immunosuppressive, metastatic‐related and angiogenic cytokines. Aside from showing that monocyte transcriptome is significantly altered by the presence of BC, we also demonstrated an overall metabolic de‐activation in refractory monocytes of BC patients. In contrast, monocytes from sensitive BC patients undergoing normal M1‐MΦ differentiation showed up‐regulation of IFN‐response genes and had no signs of metabolic alteration.
Conclusion
Altogether, our results suggest that systemic factors skew BC patient blood monocytes towards a pro‐metastatic profile, resulting in the accumulation of further polarised CD163high TAMs resembling type‐2 MΦ (M2‐MΦ) in the local BC microenvironment. These data indicate that monitoring circulating monocytes in BC patients may provide an indication of early systemic alterations induced by cancer and, thus, be instrumental in the development of improved personalised immunotherapeutic interventions.