To explore the developmental processes of epileptogenesis/ictogenesis, this study determined age-dependent functional abnormalities associated with purinergic transmission in a genetic rat model (S286L-TG) of autosomal-dominant sleep-related hypermotor epilepsy (ADSHE). The age-dependent fluctuations in the release of ATP and L-glutamate in the orbitofrontal cortex (OFC) were determined using microdialysis and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS). ATP release from cultured astrocytes was also determined using UHPLC-MS. The expressions of P2X7 receptor (P2X7R), connexin 43, phosphorylated-Akt and phosphorylated-Erk were determined using capillary immunoblotting. No functional abnormalities associated with purinergic transmission could be detected in the OFC of 4-week-old S286L-TG and cultured S286L-TG astrocytes. However, P2X7R expression, as well as basal and P2X7R agonist-induced ATP releases, was enhanced in S286L-TG OFC in the critical ADSHE seizure onset period (7-week-old). Long-term exposure to a modest level of P2X7R agonist, which could not increase astroglial ATP release, for 14 d increased the expressions of P2X7R and connexin 43 and the signaling of Akt and Erk in astrocytes, and it enhanced the sensitivity of P2X7R to its agonists. Akt but not Erk increased P2X7R expression, whereas both Akt and Erk increased connexin 43 expression. Functional abnormalities, enhanced ATP release and P2X7R expression were already seen before the onset of ADSHE seizure in S286L-TG. Additionally, long-term exposure to the P2X7R agonist mimicked the functional abnormalities associated with purinergic transmission in astrocytes, similar to those in S286L-TG OFC. Therefore, these results suggest that long-term modestly enhanced purinergic transmission and/or activated P2X7R are, at least partially, involved in the development of the epileptogenesis of ADSHE, rather than that of ictogenesis.