Most of the Pth root algorithms exhibit high latency or small convergence rates when iteratively computing the roots. Here we present a slew of algorithms based on series expansions of binomial form, and exponential terms that show low latency or small computational cost for finding the Pth root. The latency decreases if the family of series taken are truncated at higher terms. We show that Babylonian method converges quadratically while the binomial series show an increase in convergence rate from quadratic, cubic and higher order O(t^N) convergence rate as the series is sequentially truncated at higher order terms.