Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified as the active sites, respectively, to produce acrolein, propylene oxide, and CO2. Ceria rods enclosed with the {110} and {100} crystal planes, ceria cubes enclosed with the {100} crystal planes, and ceria octahedra enclosed with the {111} crystal planes exhibit distinct morphology-dependent oxygen vacancy concentrations and structures that can be well correlated with the surface compositions and structures of exposed crystal planes. Consequently, the metal-ceria interactions, structures, and catalytic performances of ceria-supported catalysts depend on the CeO2 morphology. Our results comprehensively reveal the morphology-dependent surface chemistry and catalysis of oxide nanocrystals that not only greatly deepen the fundamental understanding of oxide catalysis but also demonstrate a morphology-engineering strategy to optimize the catalytic performance of oxide catalysts. These results adequately exemplify the concept of oxide nanocrystal model catalysts for the fundamental investigations of oxide catalysis without the "materials gap" and "pressure gap"....