Tone mapping is one of the main techniques to convert high-dynamic range (HDR) images into low-dynamic range (LDR) images. We propose to use a variant of generative adversarial networks to adaptively tone map images. We designed a conditional adversarial generative network composed of a U-Net generator and patchGAN discriminator to adaptively convert HDR images into LDR images. We extended previous work to include additional metrics such as tone-mapped image quality index (TMQI), structural similarity index measure, Fréchet inception distance, and perceptual path length. In addition, we applied face detection on the Kalantari dataset and showed that our proposed adversarial tone mapping operator generates the best LDR image for the detection of faces. One of our training schemes, trained via 256 × 256 resolution HDR-LDR image pairs, results in a model that can generate high TMQI low-resolution 256 × 256 and high-resolution 1024 × 2048 LDR images. Given 1024 × 2048 resolution HDR images, the TMQI of the generated LDR images reaches a value of 0.90, which outperforms all other contemporary tone mapping operators. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.