Abstract. Example-based super-resolution has become increasingly popular over the last few years for its ability to overcome the limitations of classical multi-frame approach. In this paper we present a new examplebased method that uses the input low-resolution image itself as a search space for high-resolution patches by exploiting self-similarity across different resolution scales. Found examples are combined in a high-resolution image by the means of Markov Random Field modelling that forces their global agreement. Additionally, we apply back-projection and steering kernel regression as post-processing techniques. In this way, we are able to produce sharp and artefact-free results that are comparable or better than standard interpolation and state-of-the-art super-resolution techniques.