The single-index model is an intuitive extension of the linear regression model. It has been increasingly popular due to its flexibility in modeling. In this work, we focus on the estimators of the parameters and the unknown link function for the single-index model in a high-dimensional situation. The SCAD and Laplace error penalty (LEP)-based penalized composite quantile regression estimators, which could realize variable selection and estimation simultaneously, are proposed; a practical iterative algorithm is introduced to obtain the efficient and robust estimators. The choices of the tuning parameters, the bandwidth, and the initial values are also discussed. Furthermore, under some mild conditions, we show the large sample properties and oracle property of the SCAD and Laplace penalized composite quantile regression estimators. Finally, we evaluated the performances of the proposed estimators by two numerical simulations and a real data application.