Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Çalışma, Varyans Azaltma Teknikleri arasında yer alan Önem Örneklemesi yönteminin kullanımını ve Black-Scholes opsiyon fiyatlandırma modelindeki etkinliğini incelemek amacıyla yapılmıştır. Önem Örneklemesi yöntemi, opsiyon fiyatlandırma modellerinde tahminlerin doğruluğunu ve güvenilirliğini artırma potansiyeline sahiptir. Bu yöntemin, opsiyon fiyatlandırma süreçlerinde sağladığı iyileştirmeler ve bu iyileştirmelerin pratik uygulamalardaki etkileri, araştırmanın temel odağını oluşturmaktadır. Araştırma, Python programlama dili kullanılarak yürütülmüş ve uygulaması Avrupa tipi Alım Opsiyonları ile Black-Scholes modeli üzerinde yapılmıştır. Çalışmanın uygulama kısmında farklı kullanım fiyatları ve simülasyon sayıları için Ortalama Kate Hata (MSE) ve Standart Hata (SE) sayıları karşılaştırılmaktadır. Elde edilen bulgular, Önem Örneklemesi yönteminin, Black-Scholes modeline göre genellikle daha düşük MSE ve SE değerleri sunduğunu ortaya koymaktadır. Yüksek kullanım fiyatlarında bu yöntemin daha etkili sonuçlar verdiği gözlemlenmektedir. Simülasyon sayısı arttıkça, her iki yöntem arasındaki farkların azaldığı, ancak Önem Örneklemesi yönteminin yüksek simülasyon sayılarında bile üstün sonuçlar sunmaya devam ettiği belirlenmiştir. Sonuç olarak, bu çalışma, finansal piyasalardaki karmaşık problemlere daha etkili ve güvenilir çözümler sunmayı amaçlamaktadır. Önem Örneklemesi yöntemi, opsiyon fiyatlandırmada daha doğru sonuçlar sağlamakta ve ulusal akademik çalışmalara yeni perspektifler ve yöntemler sunmayı hedeflemektedir.
Çalışma, Varyans Azaltma Teknikleri arasında yer alan Önem Örneklemesi yönteminin kullanımını ve Black-Scholes opsiyon fiyatlandırma modelindeki etkinliğini incelemek amacıyla yapılmıştır. Önem Örneklemesi yöntemi, opsiyon fiyatlandırma modellerinde tahminlerin doğruluğunu ve güvenilirliğini artırma potansiyeline sahiptir. Bu yöntemin, opsiyon fiyatlandırma süreçlerinde sağladığı iyileştirmeler ve bu iyileştirmelerin pratik uygulamalardaki etkileri, araştırmanın temel odağını oluşturmaktadır. Araştırma, Python programlama dili kullanılarak yürütülmüş ve uygulaması Avrupa tipi Alım Opsiyonları ile Black-Scholes modeli üzerinde yapılmıştır. Çalışmanın uygulama kısmında farklı kullanım fiyatları ve simülasyon sayıları için Ortalama Kate Hata (MSE) ve Standart Hata (SE) sayıları karşılaştırılmaktadır. Elde edilen bulgular, Önem Örneklemesi yönteminin, Black-Scholes modeline göre genellikle daha düşük MSE ve SE değerleri sunduğunu ortaya koymaktadır. Yüksek kullanım fiyatlarında bu yöntemin daha etkili sonuçlar verdiği gözlemlenmektedir. Simülasyon sayısı arttıkça, her iki yöntem arasındaki farkların azaldığı, ancak Önem Örneklemesi yönteminin yüksek simülasyon sayılarında bile üstün sonuçlar sunmaya devam ettiği belirlenmiştir. Sonuç olarak, bu çalışma, finansal piyasalardaki karmaşık problemlere daha etkili ve güvenilir çözümler sunmayı amaçlamaktadır. Önem Örneklemesi yöntemi, opsiyon fiyatlandırmada daha doğru sonuçlar sağlamakta ve ulusal akademik çalışmalara yeni perspektifler ve yöntemler sunmayı hedeflemektedir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.