2012
DOI: 10.1007/s00034-012-9414-1
|View full text |Cite
|
Sign up to set email alerts
|

Single-Mixture Source Separation Using Dimensionality Reduction of Ensemble Empirical Mode Decomposition and Independent Component Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
21
0
2

Year Published

2013
2013
2021
2021

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 44 publications
(23 citation statements)
references
References 25 publications
0
21
0
2
Order By: Relevance
“…Moreover, none of the above mentioned MLE methods can recognize the multiscale characteristic of fractional Brownian motion [3]. On the other hand, Empirical Mode Decomposition (EMD) based MLE method possesses the recognition ability of multiscale characteristic in fractional Brownian motion and has demonstrated higher sEMG classification accuracy [11]. But EMD based decomposition techniques have drawbacks, such as multiple dimensions, which cannot be reduced automatically [12].…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, none of the above mentioned MLE methods can recognize the multiscale characteristic of fractional Brownian motion [3]. On the other hand, Empirical Mode Decomposition (EMD) based MLE method possesses the recognition ability of multiscale characteristic in fractional Brownian motion and has demonstrated higher sEMG classification accuracy [11]. But EMD based decomposition techniques have drawbacks, such as multiple dimensions, which cannot be reduced automatically [12].…”
Section: Introductionmentioning
confidence: 99%
“…В последние годы исследователи разрабо-тали несколько специальных алгоритмов для одноканального слепого разделения источни-ков смешанных сигналов одинаковой частоты [3][4][5][6][7]. Среди них следует назвать фильтр час-тиц (particle filter) [8] …”
Section: Introductionunclassified
“…Однако сигналы связи имеют ограничен-ные символьные характеристики, и могут быть точно описаны путем использования символов и параметров. Если указанные характерные особенности использовать в полной мере, это позволит улучшить одноканальное выделение PCMA-сигнала.В последние годы исследователи разрабо-тали несколько специальных алгоритмов для одноканального слепого разделения источни-ков смешанных сигналов одинаковой частоты [3][4][5][6][7]. Среди них следует назвать фильтр час-тиц (particle filter) [8], представляющий собой мощное инструментальное средство для нели-нейной и негауссовой оценки состояния.…”
unclassified
“…The challenge in the BSS problem is that the separation is blind, i.e., the separation has no knowledge of the sources or the mixing environment. In the past few years, BSS has become an important research area because of its extensive potential applications [3,5,6]. In reference [6], Zhang proposes a fast proximal-gradient method for independent component analysis (ICA), termed as FastPG-ICA, in the blind source separation problem.…”
Section: Introductionmentioning
confidence: 99%
“…In reference [6], Zhang proposes a fast proximal-gradient method for independent component analysis (ICA), termed as FastPG-ICA, in the blind source separation problem. A new method based on dimensionality reduction of ensemble empirical mode decomposition and ICA solves the blind source separation of single-channel mixed recording [5]. In reference [3], Wang proposes an efficient algorithm to separate harmonic source signals using only one observed channel signal from linear mixtures of source signals, etc.…”
Section: Introductionmentioning
confidence: 99%