We propose a novel supersymmetry-inspired scheme for achieving robust single mode lasing in arrays of coupled microcavities, based on factorizing a given array Hamiltonian into its "supercharge" partner array. Pumping a single sublattice of the partner array preferentially induces lasing of an unpaired zero mode. A chiral symmetry protects the zero mode similar to 1D topological arrays, but it need not be localized to domain walls or edges. We demonstrate single mode lasing over a wider parameter regime by designing the zero mode to have a uniform intensity profile.