The motion of single molecular ruthenium catalysts during and after single turnover events of ring-opening metathesis polymerization is imaged through singlemolecule superresolution tracking with a positional accuracy of ±32 nm. This tracking is achieved through the real-time incorporation of spectrally tagged monomer units into active polymer chain ends during living polymerization; thus, by design, only active-catalyst motion is detected and imaged, without convolution by inactive catalysts. The catalysts show diverse individualistic diffusive behaviors with respect to time that persist for up to 20 s. Catalysts occupy three mobility populations: quasi-stationary (23%), intermediate (53%, 65 nm), and large (24%, 145 nm) step sizes. Differences in catalyst mobility populations also exist between individual aggregates (p < 0.001). Such differential motion indicates widely different local catalyst microenvironments during the catalytic turnover. These mobility differences are uniquely observable through single-catalyst microscopy and are not measurable through traditional ensemble analytical techniques for characterizing the behavior of molecular catalysts, such as nuclear magnetic resonance spectroscopy. The measured distributions of active molecular catalyst motions would not be readily predictable through modeling or first-principles, and the range likely impacts individual catalyst turnover rate and selectivity. This range plausibly contributes to property distributions observable in bulk polymers, such as molecular weight polydispersity (e.g., 1.9 in this system), leading to a revised understanding of the mechanistic, microscale origins of macroscale polymer properties.