Based on the generating function formalism, we investigate broadband photon statistics of emission for single dimers and trimers driven by a continuous monochromatic laser field. In particular, we study the first and second moments of the emission statistics, which are the fluorescence excitation line shape and Mandel's Q parameter. Numerical results for this line shape and the Q parameter versus laser frequency in the limit of long measurement times are obtained. We show that in the limit of small Rabi frequencies and laser frequencies close to resonance with one of the one-exciton states, the results for the line shape and Q parameter reduce to those of a two-level monomer. For laser frequencies halfway the transition frequency of a two-exciton state, the photon bunching effect associated with two-photon absorption processes is observed. This super-Poissonian peak is characterized in terms of the ratio between the two-photon absorption line shape and the underlying two-level monomer line shapes. Upon increasing the Rabi frequency, the Q parameter shows a transition from super-to sub-to super-Poissonian statistics. Results of broadband photon statistics are also discussed in the context of a transition (frequency) resolved photon detection scheme, photon tracking, which provides a greater insight in the different physical processes that occur in the multi-level systems.