Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.
NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.
NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=17745c67-7bcd-486b-8b14-daecbc43474b http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=17745c67-7bcd-486b-8b14-daecbc43474b Photophysical properties of three types of dye-doped silica nanoparticles (NPs) with different dye-silica interactions have been investigated. In two cases the dye-silica interactions are noncovalent, where tris(2,2′-bipyridine)ruthenium(II) chloride (Rubpy) is attracted to the silica network electrostatically and tetramethylrhodamine-dextran (TMR-Dex) is trapped inside the silica matrix through spatial/steric hindrance. In the third case, tetramethylrhodamine-5-isothiocyanate (TRITC) modified with 3-aminopropyltriethoxysilane (APTES) to form TMR-APTES is bound to the silica matrix covalently. Although in all three types of architectures absorption, excitation, and emission spectra show only small red-shifts (<5 nm) as compared with free dye in water, excited state emission lifetimes, quantum yields, and anisotropies vary significantly and in quite different ways between the three architectures. All three types of interactions facilitate effective encapsulation of dye within a silica network. However, covalent bonding possesses a notable advantage over the other two types of interactions as it results in a large reduction of a nonradiative relaxation rate of the embedded dye (TMR-APTES) and, thus, a large (∼3.55-fold) increase of its quantum yield.