Single-Particle Spectroelectrochemistry: Revealing the Electrochemical Tuning Mechanism of Chemical Interface Damping in 1,2-Benzenedithiol-Adsorbed Single Gold Nanorods
Mukunthan Ramasamy,
Ji Won Ha
Abstract:Chemical interface damping (CID) is a newly proposed plasmon damping pathway based on interfacial hotelectron transfer from metal to adsorbate molecules. However, achieving in situ tunability of CID in single gold nanorods (AuNRs) remains a considerable challenge. Here, we present the CID effect induced by benzene 1,2-dithiol (BDT) molecule adsorption on single AuNRs and the effective electrochemical tunability of CID in BDT-adsorbed AuNRs immobilized on an indium tin oxide (ITO) surface. Manipulations of the … Show more
Chemical interface damping (CID) in gold nanorods (AuNRs) significantly influences their optical properties due to the direct transfer of hot electrons from the AuNRs to adsorbed molecules. Despite ongoing research...
Chemical interface damping (CID) in gold nanorods (AuNRs) significantly influences their optical properties due to the direct transfer of hot electrons from the AuNRs to adsorbed molecules. Despite ongoing research...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.