For stress-sensitive reservoirs, understanding the characteristics of the inflow performance relationship is vital for evaluating the performance of a well and designing an optimal stimulation. In this study, a reservoir simulator was used to establish the inflow performance relationship of a well for a wide variety of reservoirs and wellbore conditions. First, a base case was simulated using typical reservoir, wellbore, and fluid parameters. Subsequently, variations from the base case were investigated. The results of the simulation indicate that the dimensionless inflow performance relationship in the stress-sensitive reservoir is similar to the Vogel-type inflow performance relationship, which is used for evaluating the productivity of a vertical well in a solution-gas-drive reservoir. Unlike the two-phase flow in a solution-gas-drive reservoir, the nonlinear characteristic of the inflow performance relationship in stress-sensitive reservoirs is caused by stress-dependent permeability. Furthermore, the stress sensitivity level is the only parameter that affects the nonlinearity coefficient of the dimensionless inflow performance relationship equation. The nonlinearity coefficient was plotted against the stress sensitivity index, and the nonlinearity coefficient was found to be linearly proportional to the stress sensitivity index. This study provides a realistic and less expensive methodology to evaluate the reservoir productivity of stresssensitive reservoirs when the reservoir stress sensitivity level is known and to predict the reservoir stress sensitivity level when the inflow performance relationship of the stresssensitive reservoirs is known.