As high-capacity alternating current/direct current (ac/dc) power conversion systems, single-phase pulse-width modulation (PWM) converters used in high-speed railway propulsion systems adopt high-voltage Insulated-Gate Bipolar Transistors (IGBTs) as switching elements. Due to their high breakdown voltage characteristics, the switching dynamics are inferior to those of low-voltage IGBTs and switching losses are more dominant than conduction losses despite operating at relatively low switching frequencies of hundreds to several kHz. To solve this problem, this paper proposes ± 180° discontinuous PWM (DPWM) suitable for a single-phase circuit. With the simple addition of offset voltages, the proposed DPWM method can be implemented easily and switching losses can be reduced by half by clamping the switching legs of the H-bridge converter to the positive or negative dc rail during every half cycle. In addition, temperature deviation between the power stacks can be minimized by using selective application of clamping modes. The validity and effectiveness of the proposed DPWM are verified through simulations and experiments of a prototype converter.