Wax deposition modeling is complicated under oil/gas two‐phase pipe flow and therefore remains poorly understood. One‐dimensional empirical heat and mass transfer correlations are unreliably for deposition modeling in stratified flow, due to non‐uniform deposit across the pipe circumference. A mathematical model has been developed to predict the deposit thickness and the wax fraction of deposit in oil/gas stratified pipe flow using a unidirectional flow analysis of non‐isothermal hydrodynamics and heat/mass transfer. The predictions for wax deposition are found to compare satisfactorily with experimental data with three different oils for single phase and oil/gas stratified pipe flow. In particular, the reason that the deposit forming a crescent shape at the cross section of pipe observed in different experiments is revealed, based on the non‐uniform circumferential distributions of two most important parameters for the wax deposition, diffusivity at oil–deposit interface, and the solubility gradient at the oil–deposit interface at different time. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2550–2562, 2016