Sensitive mid-infrared (MIR) detection is in high demand in various applications, ranging from remote sensing, infrared surveillance, and environmental monitoring to industrial inspection. Among others, upconversion infrared detectors have recently attracted increasing attention due to their advantageous features of high sensitivity, fast response, and room-temperature operation. However, it remains challenging to realize high-performance passive MIR sensing due to the stringent requirement of high-power continuouswave pumping. Here, we propose and implement a high-efficiency and low-noise MIR upconversion detection system based on pumping enhancement via a low-loss optical cavity. Specifically, a singlelongitudinal-mode pump at 1064 nm is significantly enhanced by a factor of 36, thus allowing for a peak conversion efficiency of up to 22% at an intracavity average power of 55 W. The corresponding noise equivalent power is achieved as low as 0.3 fW∕Hz 1∕2 , which indicates at least a 10-fold improvement over previous results. Notably, the involved single-frequency pumping would facilitate high-fidelity spectral mapping, which is particularly attractive for high-precision MIR upconversion spectroscopy in photonstarved scenarios.