A design of mobile-phone antenna array with diamond-ring slot elements is proposed for fifth generation (5G) massive multiple-input/multiple-output (MIMO) systems. The configuration of the design consists of four double-fed diamond-ring slot antenna elements placed at different corners of the mobile-phone printed circuit board (PCB). A low-cost FR-4 dielectric with an overall dimension of 75 × 150 mm2 is used as the design substrate. The antenna elements are fed by 50-Ohm L-shaped microstrip-lines. Due to the orthogonal placement of microstrip feed lines, the diamond-ring slot elements can exhibit the polarization and radiation pattern diversity characteristic. A good impedance bandwidth (S11 ≤ −10 dB) of 3.2–4 GHz has been achieved for each antenna radiator. However, for S11 ≤ −6 dB, this value is 3–4.2 GHz. The proposed design provides the required radiation coverage of 5G smartphones. The performance of the proposed MIMO antenna design is examined using both simulation and experiment. High isolation, high efficiency and sufficient gain-level characteristics have been obtained for the proposed MIMO smartphone antenna. In addition, the calculated total active reflection coefficient (TARC) and envelope correlation coefficient (ECC) of the antenna elements are very low over the whole band of interest which verify the capability of the proposed multi-antenna systems for massive MIMO and diversity applications. Furthermore, the properties of the design in Data-mode/Talk-mode are investigated and presented.