Images acquired under sand-dust weather conditions are severely degraded, with low contrast and severe color shift. The reason is that, due to the influence of sand-dust particles, light is scattered and absorbed, resulting in a blurred image and low contrast; the color shift is caused by the rapid attenuation of blue light. Therefore, to solve the problem of color shift and poor visibility in sand-dust images, this paper proposes a sand-dust image restoration method based on reversing the blue channel prior (RBCP). Under the influence of the blue channel, the dark channel prior (DCP) method will fail. Therefore, the method first reverses the blue channel of the sand-dust image and uses the dark channel prior method, which we call RBCP, and then, RBCP is used to estimate the atmospheric light and transmission map and recover the sand-dust image. The restored image shows significantly improved visibility. When estimating the transmission map, a guiding filter is used to improve the coarse transmission map, and a tolerance mechanism is introduced to modify the transmission map of bright areas in the sky to solve the problem of distortion in the sky. Finally, combined with the gray world, an adaptive color adjustment factor is introduced into the restoration model to remove the color shift. Experimental results via qualitative and quantitative evaluation demonstrate that the proposed method can effectively recover clear sand-dust images and produce results superior to those of other state-of-the-art methods.