The dissociation of an H + 2 molecular-ion beam by linearly polarized, carrier-envelope-phase-tagged 5 fs pulses at 4×10 14 W/cm 2 with a central wavelength of 730 nm was studied using a coincidence 3D momentum imaging technique. Carrier-envelope-phase-dependent asymmetries in the emission direction of H + fragments relative to the laser polarization were observed. These asymmetries are caused by interference of odd and even photon number pathways, where net-zero photon and 1-photon interference predominantly contributes at H + +H kinetic energy releases of 0.2 -0.45 eV, and net-2-photon and 1-photon interference contributes at 1.65 -1.9 eV. These measurements of the benchmark H + 2 molecule offer the distinct advantage that they can be quantitatively compared with ab initio theory to confirm our understanding of strong-field coherent control via the carrier-envelope phase.
PACS numbers: XXXOne ultimate goal of ultrafast, strong-field laser science is to coherently control chemical reactions [1][2][3]. A prerequisite to achieving this goal is to understand the control mechanisms and reaction pathways. To this end, tailoring the electric field waveform of few-cycle laser pulses to control reactions and uncover the underlying physics has become a powerful tool [4][5][6]. It has been applied to the dissociative ionization of H 2 and its isotopologues [7][8][9][10][11][12] and has recently been extended to more complex diatomic molecules, such as CO [13][14][15], and to small polyatomic molecules [16,17].Conceptually, one of the most basic features of a fewcycle laser pulse to control is the carrier-envelope phase (CEP). When the laser's electric field is written as E(t) = E 0 (t) cos(ωt + φ), E 0 (t) is an envelope function, ω is the carrier angular frequency, and φ is the CEP. In fact, all of the few-cycle waveform experiments cited above used the CEP as the control parameter.For example, Kling et al. used 5 fs, 1.2×10 14 W/cm 2 pulses with stabilized CEP to dissociatively ionize D 2 and found asymmetries in the emission direction of D + ions for kinetic energy releases (KER) above 6 eV [7,8]. The diminished dissociation signal in a circularly polarized laser field indicated that recollision played a role. Recollision entails a tunnel-ionized electron undergoing a collision with its parent ion after acceleration by the oscillating laser field [18,19]. The energy exchange between the laser-driven electron and the parent ion can promote the D + 2 to the 2pσ u excited state. Coupling of the 2pσ u and 1sσ g states [20] on the trailing edge of the laser pulse during the dissociation of D + 2 was suggested as the explanation for the CEP-dependent asymmetry [7,8].Another example comes from Kremer et al. who exposed an H 2 target to 6 fs, 4.4×10 14 W/cm 2 CEPstabilized laser pulses and observed asymmetries for KER values between 0.4 and 3 eV [9] -energies they attributed to bond softening (BS) [21] and not electron recollision, which has higher KER. They proposed that the initial ionization of H 2 generates a coherent wav...