Herein, a novel concept for the acid catalyzed dehydration of fructose (FRC) to 5-hydroxymethylfurfural (5-HMF) in a biphasic tubular reactor is presented. Reaction kinetic models were developed based on experiments performed in a newly developed lab-scale autoclave that enables a decoupled investigation of singlephase reaction and 5-HMF mass transfer. Our reaction kinetic models allow an accurate description of the biphasic reaction. Subsequently, we integrate the reaction kinetic models in the model-based design of a tailored reactor unit. This reactor unit employs the concept of in-situ extraction in a countercurrent flow of a monodisperse droplet swarm within a continuous aqueous phase. From reactor calculations, we obtain a maximum 5-HMF yield of 76% at full FRC conversion.Countercurrent in-situ extraction enables over 99% 5-HMF recovery in the organic phase.