“…The approach has already been successfully utilized to dissect the genetic architecture associated with important agronomic and quality traits in several crops, such as maize (Zhang et al, 2018 ; Zhu et al, 2018 ; An et al, 2020 ), rice (Cui et al, 2018 ; Liu et al, 2020 ), barley (Hu et al, 2018 ), cotton (Li et al, 2018 ; Su et al, 2018 ), soybean (Ziegler et al, 2018 ), and foxtail millet (Jaiswal et al, 2019 ). In wheat also, ML-GWAS has been used to identify genomic regions associated with different agronomic and yield associated traits (Jaiswal et al, 2016 ; Ward et al, 2019 ; Hanif et al, 2021 ; Malik et al, 2021a ; Muhammad et al, 2021 ), grain architecture-related traits (Schierenbeck et al, 2021 ), spike-layer uniformity-related traits (Malik et al, 2021b ), potassium use efficiency (Safdar et al, 2020 ), nutrient accumulation (Bhatta et al, 2018 ; Kumar et al, 2018 ; Alomari et al, 2021 ), disease resistance (Cheng et al, 2020 ; Habib et al, 2020 ; Tomar et al, 2021 ), and salinity tolerance (Chaurasia et al, 2020 ).…”