Scientific AbstractEmotional learning and memory are affected in numerous psychiatric disorders. At a systems level, however, the underlying neural circuitry is not well defined. Rodent fear conditioning (FC) provides a translational model to study the networks underlying associative memory retrieval. In the current study, functional connectivity among regions related to the cue associative fear network were investigated using functional ultrasound (fUS), a novel imaging technique with great potential for detecting regional neural activity through cerebral blood flow. Behavioral fear expression and fUS imaging were performed one and thirty-one days after FC to assess recent and remote memory recall. Cue-evoked increases in functional connectivity were detected throughout the amygdala, with the lateral (LA) and central (CeA) amygdalar nuclei emerging as major hubs of connectivity, though CeA connectivity was reduced during remote recall. The hippocampus and sensory cortical regions displayed heightened connectivity with the LA during remote recall, whereas interconnectivity between the primary auditory cortex and temporal association areas was reduced. Subregions of the prefrontal cortex exhibited variable connectivity changes, where prelimbic connectivity with the amygdala was refined while specific connections between the infralimbic cortex and amygdalar subregions emerged during remote memory retrieval. Moreover, freezing behavior positively correlated with functional connectivity between hubs of the associative fear network, suggesting that emotional response intensity reflected the strength of the cue-evoked functional network. Overall, our data provide evidence of the functionality of fUS imaging to investigate the neural dynamics of memory encoding and retrieval, applicable in the development of innovative treatments for affective disorders.HighlightsFunctional ultrasound imaging can elucidate fear associated neural networksFreezing behavior correlates with cue-evoked functional connectivity changesThe lateral and central amygdalar nuclei are major hubs in the fear networkThe hippocampus is active during recent and remote cued fear memory retrievalConnectivity profiles of the prelimbic and infralimbic areas vary in remote recall