“…A variety of classifiers for both offline and real-time BCIs exist. Besides linear programming machines (Shenoy et al, 2007), Bayesian approaches (Chestek et al, 2013), pattern matching (Bleichner et al, 2016; Branco et al, 2017; Kapeller et al, 2018), neural networks (Pan et al, 2018), and support vector machines (Onaran et al, 2011; Yanagisawa et al, 2011; Li et al, 2017), linear discriminant analysis (LDA) is widely used for both non-invasive and invasive BCI and all types of features (Bostanov, 2004; Scherer et al, 2004; Blankertz et al, 2008, 2011; Hoffmann et al, 2008; Prueckl and Guger, 2009; Onaran et al, 2011; Yanagisawa et al, 2011; Pistohl et al, 2012; Kapeller et al, 2014; Xu et al, 2014; Lotte et al, 2015; Xie et al, 2015; Hotson et al, 2016; Gruenwald et al, 2017a; Jiang et al, 2017; Li et al, 2017). LDA is robust, has low complexity due to linearity and performs well in line with more sophisticated methods (Garrett et al, 2003; Lee et al, 2005; Lotte et al, 2007).…”