Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The human papillomavirus (HPV) is a non-enveloped DNA virus transmitted through skin-to-skin contact that infects epithelial and mucosal tissue. It has over 200 known genotypes, classified by their pathogenicity as high-risk and low-risk categories. High-risk HPV genotypes are associated with the development of different types of cancers, including cervical cancer, which is a leading cause of mortality in women. In clinical practice and the market, the principal tests used to detect HPV are based on cytology, hybrid detection, and qPCR. However, these methodologies may not be ideal for the required timely diagnosis. Tests have been developed based on isothermal nucleic acid amplification tests (INAATs) as alternatives. These tests offer multiple advantages over the qPCR, such as not requiring specialized laboratories, highly trained personnel, or expensive equipment like thermocyclers. This review analyzes the different INAATs applied for the detection of HPV, considering the specific characteristics of each test, including the HPV genotypes, gene target, the limit of detection (LOD), detection methods, and detection time. Additionally, we discuss the tests available on the market that are approved by the Food and Drug Administration (FDA). Finally, we address the challenges and potential solutions for the large-scale implementation of INAATs, particularly in rural or underserved areas.
The human papillomavirus (HPV) is a non-enveloped DNA virus transmitted through skin-to-skin contact that infects epithelial and mucosal tissue. It has over 200 known genotypes, classified by their pathogenicity as high-risk and low-risk categories. High-risk HPV genotypes are associated with the development of different types of cancers, including cervical cancer, which is a leading cause of mortality in women. In clinical practice and the market, the principal tests used to detect HPV are based on cytology, hybrid detection, and qPCR. However, these methodologies may not be ideal for the required timely diagnosis. Tests have been developed based on isothermal nucleic acid amplification tests (INAATs) as alternatives. These tests offer multiple advantages over the qPCR, such as not requiring specialized laboratories, highly trained personnel, or expensive equipment like thermocyclers. This review analyzes the different INAATs applied for the detection of HPV, considering the specific characteristics of each test, including the HPV genotypes, gene target, the limit of detection (LOD), detection methods, and detection time. Additionally, we discuss the tests available on the market that are approved by the Food and Drug Administration (FDA). Finally, we address the challenges and potential solutions for the large-scale implementation of INAATs, particularly in rural or underserved areas.
Human Papillomavirus (HPV) infection is a significant global health concern linked to various cancers, particularly cervical cancer. Timely and accurate detection of HPV is crucial for effective management and prevention strategies. Traditional laboratory-based HPV testing methods often suffer from limitations such as long turnaround times, restricted accessibility, and the need for trained personnel, especially in resource-limited settings. Consequently, there is a growing demand for point-of-care (POC) HPV testing solutions that offer rapid, easy-to-use, and convenient screening at the primary care level. This review provides a comprehensive overview of recent advancements and emerging technologies utilized in POC HPV testing using isothermal amplification methods, in addition to evaluating their diagnostic performance, sensitivity, specificity, and clinical utility compared to conventional laboratory-based assays, particularly in low-resource settings, where access to centralized laboratory facilities is limited. We provide insights into the potential of isothermal nucleic acid amplification to revolutionize cervical cancer screening and prevention efforts worldwide, with emphasis on the need for continued research, innovation, and collaboration to optimize the performance, accessibility, and affordability of POC HPV testing solutions, ultimately contributing to the worldwide effort towards the elimination of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.