2022
DOI: 10.1038/s41586-022-05352-2
|View full text |Cite
|
Sign up to set email alerts
|

Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

2
22
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 59 publications
(25 citation statements)
references
References 51 publications
2
22
0
1
Order By: Relevance
“…肤效应(non-Hermitian skin effect, NHSE) [249,250] . 又如, 在拓扑半金属纳米线中定义量子点 [251] , 可以 在 超 导 体 -金 属 -超 导 体 的 三 端 器 件 中 探 测 交 叉 Andreev反射(crossed Andreev reflection, CAR)与 p波配对 [252,253] , 考察量子纠缠(quantum entanglement)与贝尔不等式(Bell inequality) [254] 特别地, 两对Majorana可以构建一个拓扑量子比 特. 通过生长或微纳加工的办法, 制备拓扑半金属 (例如Cd 3 As 2 )的Y型纳米线结构 [255] , 通过局域栅 压的纯电学操控实现Majorana零能模产生、湮灭 以及编织操作, 有望实现拓扑量子比特从0到1的 突破(图12).…”
Section: 栅压调控拓扑超导相变unclassified
“…肤效应(non-Hermitian skin effect, NHSE) [249,250] . 又如, 在拓扑半金属纳米线中定义量子点 [251] , 可以 在 超 导 体 -金 属 -超 导 体 的 三 端 器 件 中 探 测 交 叉 Andreev反射(crossed Andreev reflection, CAR)与 p波配对 [252,253] , 考察量子纠缠(quantum entanglement)与贝尔不等式(Bell inequality) [254] 特别地, 两对Majorana可以构建一个拓扑量子比 特. 通过生长或微纳加工的办法, 制备拓扑半金属 (例如Cd 3 As 2 )的Y型纳米线结构 [255] , 通过局域栅 压的纯电学操控实现Majorana零能模产生、湮灭 以及编织操作, 有望实现拓扑量子比特从0到1的 突破(图12).…”
Section: 栅压调控拓扑超导相变unclassified
“…Consequently, smart wear is becoming an item that will dominate the fiber material industry in the future. Hybrid fiber composites can have various applications, such as in healthcare, defense, fashion and entertainment, sportswear, purpose clothing, and transportation, as well as integration with advanced technology [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]. To date, research on cutting-edge hybrid fiber materials is being conducted [ 4 , 5 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 ].…”
Section: Introductionmentioning
confidence: 99%
“…Hybrid superconducting-normal (NS) setups have captured great interest both from the theoretical [2] and experimental sides [3]. The related phenomena, such as the Josephson effect [4][5][6][7] and multiple Andreev reflections [8], are employed as quantum advantages for creating a wide range of possibilities for new electronic devices, including supercurrent transistors [9][10][11], generators of spin-entangled electrons [12][13][14][15][16][17][18][19], superconducting quantum interference devices [20][21][22][23][24][25], superconducting single-photon detectors [26], NS-based qubits like Andreev qubits [27][28][29] and topological qubits [30][31][32]. The latter proposed as building blocks for faulttolerant quantum computation.…”
Section: Introductionmentioning
confidence: 99%