We consider the dynamical properties of a gapped quantum spin system coupled to the electric field of a laser, which drives the resonant excitation of specific phonon modes that modulate the magnetic interactions. We deduce the quantum master equations governing the time-evolution of both the lattice and spin sectors, by developing a Lindblad formalism with bath operators providing an explicit description of their respective phonon-mediated damping terms. We investigate the nonequilibrium steady states (NESS) of the spin system established by a continuous driving, delineating parameter regimes in driving frequency, damping, and spinphonon coupling for the establishment of physically meaningful NESS and their related nontrivial properties. Focusing on the regime of generic weak spin-phonon coupling, we characterize the NESS by their frequency and wave-vector content, explore their transient and relaxation behavior, and discuss the energy flow, the system temperature, and the critical role of the type of bath adopted. Our study lays a foundation for the quantitative modeling of experiments currently being designed to control coherent many-body spin states in quantum magnetic materials.