The logics RŁ, RP, and RG have been obtained by expanding Łukasiewicz logic Ł, product logic P, and G ödel-Dummett logic G with rational constants. We study the lattices of extensions and structural completeness of these three expansions, obtaining results that stand in contrast to the known situation in Ł, P, and G. Namely, RŁ is hereditarily structurally complete. RP is algebraized by the variety of rational product algebras that we show to be Q-universal. We provide a base of admissible rules in RP, show their decidability, and characterize passive structural completeness for extensions of RP. Furthermore, structural completeness, hereditary structural completeness, and active structural completeness coincide for extensions of RP, and this is also the case for extensions of RG, where in turn passive structural completeness is characterized by the equivalent algebraic semantics having the joint embedding property. For nontrivial axiomatic extensions of RG we provide a base of admissible rules. We leave the problem open whether the variety of rational G ödel algebras is Q-universal.