Abstract:We study submodules of analytic Hilbert modules defined over certain algebraic varieties in bounded symmetric domains, the so-called Jordan-Kepler varieties V ℓ of arbitrary rank ℓ. For ℓ > 1 the singular set of V ℓ is not a complete intersection. Hence the usual monoidal transformations do not suffice for the resolution of the singularities. Instead, we describe a new higher rank version of the blow-up process, defined in terms of Jordan algebraic determinants, and apply this resolution to obtain the rigidity… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.