2019
DOI: 10.48550/arxiv.1905.09583
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Singular limits of reaction diffusion equations and geometric flows with discontinuous velocity

Abstract: We consider the singular limit of a bistable reaction diffusion equation in the case when the velocity of the traveling wave solution depends on the space variable and converges to a discontinuous function. We show that the family of solutions converges to the stable equilibria off a front propagating with a discontinuous velocity. The convergence is global in time by applying the weak geometric flow uniquely defined through the theory of viscosity solutions and the level-set equation.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?