“…Now, we verify the optimality of the control ū(0) = ū(1) = (0, 0) * , ū( 2 Clearly, the set (f , 𝜎)(0, x(0), U(0)) is 𝛾-convex, the set (f , 𝜎)(1, x(1), U(1)) is convex, and for all x = (x 1 , x 2 , x 3 ) * ∈ R 3 ⧵ {0}, the sets (f , 𝜎)(1, x, U(1)) are starlike relative to the point f (1, x, ū(1)) + 𝜎(1, x, ū( 1))(w(2) − w(1)) = (0, 0, x 2 2 + x 2 2 (w(2) − w(1))) * . Taking into account these calculations, we have p(1) = q(0) = (0, 0, 0) * , further, we see that the control ū(t), t ∈ T is singular at t = 0 relative to the vector (û, v) ∈ U 0 (2) × U(0), where û = (0, û 2 (2)) * , û 2 (2) ∈ {−1, −0.5, 0} and v = (v 1 (0), 0) * , v 1 (0) ∈ [−1, 0] ∪ [2,3], and is also singular at t = 1 relative to the vector (û, ṽ) * ∈ U 0 (2) × U (1), where û = (0, û 2 (2)) * , û 2 (2) ∈ {−1, −0.5, 0} and ṽ = (ṽ 1 (1), ṽ2 (1)) * ∈ U (1). Set û = (0, −1) * , using ( 7), ( 10) and ( 31), (32), we get H xx (0, x(0), ū(0), p(1)) = H xx (1, x(1), ū(1), p(2)) = (0, 0, 0; 0, 0, 0; 0, 0, 0), H xx (2, x(2), ū(2), û(2), p(3)) = P(2) = (0, 0, 0; 0, −2, 0; 0, 0, 0), P(1) = (0, 0, 0; 0, 0, 0; 0, 0, 0), K(0, v, ū(0), û) = 0, K(1, ṽ, ū(1), û) = −2[ṽ 1 (1) + ṽ1 (1)(w(2) − w( 1))] 2 , L(1, ṽ, ū(1), û)[Δ v f (0) + Δ v 𝜎(0)(w(1) − w(0))] = ṽ2 (1)[v 1 (0) + v 1 (0)(w(1) − w(0))].…”