<p>In this work, we investigated the existence of nontrivial weak solutions for the equation</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -{\rm div}(w(x)\nabla u) \ = \ f(x,u),\qquad x \in \mathbb{R}^2, $\end{document} </tex-math></disp-formula></p><p>where $ w(x) $ is a positive radial weight, the nonlinearity $ f(x, s) $ possesses growth at infinity of the type $ {\rm \exp}\big((\alpha_0+h(|x|)\big)|s|^{2/(1-\beta)}) $, with $ \alpha_0 > 0 $, $ 0 < \beta < 1 $ and $ h $ is a continuous radial function that may be unbounded at infinity. To show the existence of weak solutions, we used variational methods and a new type of the Trudinger-Moser inequality defined on the whole two-dimensional space.</p>