A number of two-dimensional time-periodic flows, for example the Kármán street wake of a symmetrical bluff body such as a circular cylinder, possess a spatio-temporal symmetry: a combination of evolution by half a period in time and a spatial reflection leaves the solution invariant. Floquet analyses for the stability of these flows to three-dimensional perturbations have in the past been based on the Poincaré map, without attempting to exploit the spatio-temporal symmetry. Here, Floquet analysis based on the half-periodflip map provides a comprehensive interpretation of the symmetry breaking bifurcations.