We analysed the problem of determining the exponents in the asymptotic solution of the isotropic theory of elasticity problem at the top of the wedge-shaped region where its sides (or one of them) are supported by a thin coating and lean without friction on the rigid bases. On the other side of the wedge-shaped region, it is assumed that there are various boundary conditions, including when there is a thin coating. Mathematically, the problem reduces to the problem of determining the roots of transcendental characteristic equations arising from the condition for the existence of a nontrivial solution of a system of the linear homogeneous equations. The characteristics of the stress tensor components have been determined for the various combinations of boundary conditions and physical and geometric parameters. The qualitative conclusions are made. In particular, we have established the combinations of the values of these parameters at which the singular behaviour of stresses arises.